自由空间的通透性在哪里?膜双份子层的厚度大约为8纳米,所以膜的电容大约为.01 pF/μm[Hille, 1992]。因为通道开放而改变的膜电阻不会大程度上改变测量阻抗的电容,因为通道密度是很低的。大乌贼轴突阻抗数值表现出来2%的电量的变化并伴有膜电阻下降为原来的四十分之一。
所以,细胞膜的最简单的模型是RC电路,在这种模型中电阻是不断变化的(决定于电子通道的状态)。经典的方法是,细胞膜的性质使通过发送一个矩形方波并测量随着时间成指数级下降的电压:这里V是起始电压。所以,通过测量电压的变化并且假设电容值为0.01 pF/μm,科学家可以推断出膜的电阻。我们将在第五章对此进行详细介绍,还有其他的方法来测量复杂的膜阻抗特点(决定了电阻和电容的大小),例如通过正弦的电刺激来测量他们的值
其中E是渗透性的自由空间( 8.85 ¥ 10 ℃ * V *米) 。对于大多数生物
○
膜,总脂双层厚度( d )是大约800纳米导致
2
膜电容约0.01电容/微米[惠勒, 1992 ] 。膜的变化
由于阻力的开放渠道,不会明显改变电容
阻抗测量以来的通道密度相对较低。阻抗数据
巨型鱿鱼轴突膜展出不到2个百分点的变化能力,
40倍减少膜电阻[科尔和柯蒂斯, 1939年] 。
因此,最简单的模型细胞膜是一个平行的RC电路
电阻是可变的(不依赖国家的离子通道) 。经典的
膜性能的细胞,推导出驾驶平方米脉冲跨越膜
和测量电压衰减指数随时间:
其中V是在启动电压。因此,通过测量电压随着时间的推移和假设
ö
2
电容值为0.01电容/微米,科学家能够推断膜电阻。
至于将详细讨论在第5章,还有其他的方式来衡量的
复杂的阻抗特性(测定两个电阻和电容)的
膜的使用正弦激励整个组织或细胞来加以衡量