(1)根据积化和差公式
cos2A-cos2B=cos(π/3)+cos2A
cos2B=-1/2
因为0即B=π/3或2π/3
(2)因为b<=a,所以根据大边对大角,B<=A
所以B=π/3,且π/3=B<=A=π-B-C<π-B=2π/3
根据正弦定理a/sinA=b/sinB=c/sinC=√3/(√3/2)=2
a=2sinA
c=2sinC
a-c/2=2sinA-sinC
=2sinA-sin(A+B)
=2sinA-sin(A+π/3)
=2sinA-(1/2)*sinA-(√3/2)*cosA
=(3/2)*sinA-(√3/2)*cosA
=√3*sin(A-π/6)
因为π/6<=A-π/6<π/2
所以1/2<=sin(A-π/6)<1
即a-c/2的取值范围为[√3/2,√3)