(1)∵四边形ABCD是正方形,
∴AE∥CF,
又∵AE=CF,
∴四边形AEFC是平行四边形,
故EF∥AC.
(2)连接BG
∵四边形ABCD是正方形,且EF∥AC,
∴∠DEG=∠DAC=45°,∠DGE=∠DCA=45°;
故∠CFG=∠DEG=45°,∠CGF=∠DGE=45°,
∴∠CGF=∠CFG,CG=CF;
∵AE=CF,
∴AE=CG;
在△ABE与△CBG中,
,
AB=BC AE=CG
∴△ABE≌CBG(HL),
∴BE=BG;
又∵BE=EG,
∴BE=BG=EG,△BEG是等边三角形,
故∠BEF=60°.(3)延长EA到M,使AH=CG;过点M作MK⊥BE于点K;
∵△BEG是等边三角形,
∴∠EBG=60°,
∴∠ABE+∠CBG=90°-60°=30°;
在△ABM与△BCG中,
,
BA=BC AM=CG
∴△ABM≌△BCG(HL),
∴BM=BC=4,∠ABM=∠CBG;
故∠ABM+∠ABE=∠ABE+∠CBG=30°,
∴MK=
BH=2,1 2
∴△BME的面积=
×4×2=4,△BAE的面积═1 2
×4=2.1 2