MATLAB中训练LM算法的BP神经网络

2025-01-16 11:18:09
推荐回答(2个)
回答1:

1.初始权值不一样,如果一样,每次训练结果是相同的
2.是
3.在train之前修改权值,IW,LW,b,使之相同
4.取多次实验的均值
一点浅见,仅供参考

训练误差是否降到一定范围内,比如1e-3,
将训练样本回代结果如何,
训练样本进行了预处理,比如归一化,而测试样本未进行同样的处理

这样的归一化似有问题,我也认为“测试数据的归一化也用训练数据归一化时得出的min和max值”,
请参考这个帖子http://www.ilovematlab.cn/thread-27021-1-1.html
测试数据带入训练好的神经网络误差当然不会达到1e-5,这是预测啊。
但将训练数据带入误差必然是1e-5,算法终止就是因为达到这个误差才终止,这个误差是由训练数据的输入、输出以及神经网络的权值、激活函数共同决定的,神经网络训练完后,权值、激活函数定了,同样的数据再代入神经网络,误差会不等于1e-5?
第二个问题:不可能每个值都达到1e-5,1e-5是MSE(mean square error),它们的平方和除以总数再开方,mse(E)必为1e-5
另外,LM算法虽然训练最快,但是预测精度一般不好,不如gdm,gdx

回答2:

1.初始权值不一样,如果一样,每次训练结果是相同的
2.是
3.在train之前修改权值,IW,LW,b,使之相同
4.取多次实验的均值
一点浅见,仅供参考