∵△ABC的三边长分别为a,b,c,且a4+b4=c4,∴(a2+b2)2=a4+b4 +2a2b2=c4+2a2b2.∴(a2+b2)2-c4 =2a2b2>0.又 (a2+b2)2-c4 =(a2+b2+c2) (a2+b2-c2),∴(a2+b2-c2)>0.△ABC中,由余弦定理可得 cosC= a2+b2?c2 2ab >0,故角C 为锐角.再由题意可得,c边为最大边,故角C 为△ABC的最大角,∴△ABC是锐角三角形,故选:C.