如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点..

.
2025-05-02 08:44:36
推荐回答(1个)
回答1:

(1)证明:连接EO,OA.∵E,O分别为B1C,BC的中点,∴EO∥BB1.
又DA∥BB1,且.∴四边形AOED是平行四边形,
即DE∥OA,DE⊄面ABC.∴DE∥面ABC.
(2)由题DE⊥面CBB1,且由(1)知DE∥OA.∴AO⊥面CBB1,∴AO⊥BC,
∴AC=AB.因BC是底面圆O的直径,得CA⊥AB,且AA1⊥CA,
∴CA⊥面AA1B1B,即CA为四棱锥的高.
设圆柱高为h,底半径为r,则V柱=πr2h,,
∴V锥:V柱=.
(3)解:作过C的母线CC1,连接B1C1,则B1C1是上底面圆O1的直径,
连接A1O1,得A1O1∥AO,又AO⊥面CBB1C1,
∴A1O1⊥面CBB1C1,连接CO1,
则∠A1CO1为CA1与面BB1C所成的角,
设BB1=BC=2,则,
A1O1=1.(12分)
在Rt△A1O1C中,.