letf(x) = x/[1+(sinx)^2]f(-x)=-f(x)=>∫(-π/2->π/2) x/[1+(sinx)^2] dx =0∫(-π/2->π/2) (x+cosx)/[1+(sinx)^2] dx=∫(-π/2->π/2) cosx/[1+(sinx)^2] dx=2∫(0->π/2) cosx/[1+(sinx)^2] dx=2∫(0->π/2) dsinx/[1+(sinx)^2] =2[arctan(sinx)]|(0->π/2)=π/2