cosx的四次方的原函数是什么

谢谢了
2025-02-27 23:29:10
推荐回答(3个)
回答1:

cosx的四次方的原函数是3x/8+(sin2x)/4+(sin4x)/32+C。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。

计算过程:∫(cosx)^4dx=∫[(1+cos2x)/2]^2dx=1/4∫[1+2cos2x+(cos2x)^2]dx=1/4∫dx+1/4∫2cos2xdx+1/4∫(cos2x)^2dx=x/4+C+1/4∫cos2xd(2x)+1/4∫[(1+cos4x)/2]dx=x/4+(sin2x)/4+C+1/4∫1/2dx+1/4∫(cos4x)/2dx=3x/8+(sin2x)/4+C+1/32∫4cos4xdx=3x/8+(sin2x)/4+C+1/32∫cos4xd(4x)=3x/8+(sin2x)/4+(sin4x)/32+C

回答2:

∫(cosx)^4dx
=∫[(1+cos2x)/2]^2dx
=1/4∫[1+2cos2x+(cos2x)^2]dx
=1/4∫dx+1/4∫2cos2xdx+1/4∫(cos2x)^2dx
=x/4+C+1/4∫cos2xd(2x)+1/4∫[(1+cos4x)/2]dx
=x/4+(sin2x)/4+C+1/4∫1/2dx+1/4∫(cos4x)/2dx
=3x/8+(sin2x)/4+C+1/32∫4cos4xdx
=3x/8+(sin2x)/4+C+1/32∫cos4xd(4x)
=3x/8+(sin2x)/4+(sin4x)/32+C

回答3:

cos^版4
x
=(cos^2
x)^2
=[(1+cos2x)/2]^2
=(1/4)[1+2cos2x+cos^2
2x]
=(1/4)[1+2cos2x+(1+cos4x)/2]
=(1/8)[3+4cos2x+cos4x]
积分权
=(1/8)[3x+2sin2x+(1/4)sin4x]
=(1/32)[12x+8sin2x+sin4x]