解答:解:过C作CE⊥AB于E,∵CE⊥AB,CE过圆心C,∴AD=2AE.∵△ABC中,∠C是直角,AC=9,BC=12,∴由勾股定理得:AB= AC2+BC2 =15,由三角形的面积公式得:AC×BC=AB×CE,即9×12=15CE,∴CE= 9×12 15 = 36 5 ,在△AEC中,由勾股定理得:AE= AC2?CE2 = 92?( 36 5 )2 = 27 5 ,∴AD=2AE= 54 5 .