利用已知展开式 1/(1-x) = ∑(n≥0)xⁿ,|x|<1,可得 f(x) = 3x/(x²+x-2) = 3x/[(x+2)(x-1)] = 2/(x+2) +1/(x-1) = 1/(1+x/2) -1/(1-x) = ∑(n≥0)(-x/2)ⁿ - ∑(n≥0)xⁿ,|x|<1。