已知sin(a+b)=2⼀3,sin(a-b)=3⼀4,求tana⼀tanb 的值。

2025-02-25 01:58:50
推荐回答(2个)
回答1:

sin(a+b)=2/3
sinacosb+cosasinb=2/3 (1)
sin(a-b)=3/4
sinacosb-cosasinb=3/4 (2)

(1)+(2),2sinacosb=17/12
(1)-(2),2cosasinb=-1/12

tana/tanb =2sinacosb/2cosasinb=-17

回答2:

sin(a+b)=sin a * cos b + cos a * sin b=2/3

sin(a-b)=sin a * cos b - cos a * sin b=3/4

sin(a+b)+sin(a-b)=2 sin a * cos b= 17/12
sin(a+b)-sin(a-b)=2 cos a * sin b= -1/12

tana/tanb =(2)sin a * cos b /(2)cos a * sin b= -17