∵f(x)= ex 1+ax2 ,∴f'(x)=ex? 1+ax2?2ax (1+ax2)2 ,∵f(x)为R上的单调函数,∴f'(x)≥0或f'(x)≤0在R上恒成立,又∵a为正实数,∴f'(x)≥0在R上恒成立,∴ax2-2ax+1≥0在R上恒成立,∴△=4a2-4a=4a(a-1)≤0,解得0≤a≤1,∵a>0,∴0<a≤1,∴a的取值范围为0<a≤1.