设f✀(arctanx)=x∧2,求f(x)

2025-02-26 15:05:09
推荐回答(2个)
回答1:

令arctanx=u
则x=tanu
f'(u)=(tanu)^2=(secu)^2-1
f(u)=tanu-u+c
所以 f(x)=tanx-x+c

回答2:

f'(arctanx)=x^2
df(arctanx ) = x^2 dx
f(arctanx )=(1/3)x^3 + C'
f(x) = (1/3) (tanx)^3 + C