高一的一个关于平面向量的数量积的问题

2025-02-28 19:01:41
推荐回答(2个)
回答1:

因为方程有实根 所以|a|^2-4*ab≥0
|a|^2-4*ab=|a|^2-4*|a||b|CosØ=|a|^2-2*|a|^2CosØ≥0
得:|a|^2≥2*|a|^2CosØ 即CosØ≤0.5
所以a与b夹角范围:60°到180°

π=180° π/3=60° 表示方法不同而已

回答2:

解:由方程有实根可得:
|a|^2-4*ab≥0
|a|^2-4a·b
=4|b|^2-4|a||b|CosØ
=4|b|^2-8|b|^2CosØ
结合上述两式,易得:CosØ≤0.5
又知0°≤Ø≤180°(角度制)或0≤Ø≤π(弧度制)
故:60°≤Ø≤180°或π/3≤Ø≤π
就是说,结果可以用以上两种方法来表示
转换关系为弧度制=π*角度/180°