求导
解:y'=3x²-12x+9=3(x²-4x+3)=3(x-1)(x-3)令y'=0,得x=1或x=3,当x<1或x>=3时,y'>0,函数单调递增,当1当x=1或x=3时,y'=0,函数有极值,∵y在定义域内先增后减再增,∴x=1取极大值,x=3取极小值,y极大=1³-6×1²+9×1-3=1,y极小=3³-6×3²+9×3-3=-3