(1)证明:连接OD,AD,∵EF是⊙O的切线,∴OD⊥EF.又∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC.又∵AB=AC,∴BD=DC.∴OD∥AC. ∴AC⊥EF. (2)解:设⊙O的半径为x.∵OD∥AE,∴△ODF∽△AEF.∴ OD AE = OF AF ,即 x 2x?1.2 = 2+x 2+2x .解得:x=3.∴⊙O的半径为3.