如图所示:设4只黑球分别用1,2,3,4表示,6只白球分别利用:5,6,7,8,9,10,表示,则
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
|
(2,1) |
(3,1) |
(4,1) |
(5,1) |
(6,1) |
(7,1) |
(8,1) |
(9,1) |
(10,1) |
2 |
(1,2) |
|
(3,2) |
(4,2) |
(5,2) |
(6,2) |
(7,2) |
(8,2) |
(9,2) |
(10,2) |
3 |
(1,3) |
(2,3) |
|
(4,3) |
(5,3) |
(6,3) |
(7,3) |
(8,3) |
(9,3) |
(10,3) |
4 |
(1,4) |
(2,4) |
(3,4) |
|
(5,4) |
(6,4) |
(7,4) |
(8,4) |
(9,4) |
(10,4) |
5 |
(1,5) |
(2,5) |
(3,5) |
(4,5) |
|
(6,5) |
(7,5) |
(8,5) |
(9,5) |
(10,5) |
6 |
(1,6) |
(2,6) |
(3,6) |
(4,6) |
(5,6) |
|
(7,6) |
(8,6) |
(9,6) |
(10,6) |
7 |
(1,7) |
(2,7) |
(3,7) |
(4,7) |
(5,7) |
(6,7) |
|
(8,7) |
(9,7) |
(10,7) |
8 |
(1,8) |
(2,8) |
(3,8) |
(4,8) |
(5,8) |
(6,8) |
(7,8) |
|
(9,8) |
(10,8) |
9 |
(1,9) |
(2,9) |
(3,9) |
(4,9) |
(5,9) |
(6,9) |
(7,9) |
(8,9) |
|
(10,9) |
10 |
(1,10) |
(2,10) |
(3,10) |
(4,10) |
(5,10) |
(6,10) |
(7,10) |
(8,10) |
(9,10) |
|
所有的情况有90种,符合题意两只球都是黑球的情况有:12种,
故两只球都是黑球的概率为:
=
.