xcosx的不定积分如何求

解xcosdx不定积分的解题思路。
2024-12-04 21:51:33
推荐回答(5个)
回答1:

∫xcosxdx =∫xdsinx =xsinx-∫sinxdx =xsinx+cosx+C 

利用牛顿-莱布尼兹公式就可以得到xcosx定积分。

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。

扩展资料:

设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞

参考资料来源:百度百科——不定积分

回答2:

不定积分结果不唯一求导验证应该能够提高凑微分的计算能力。

回答3:

分析:本题可直接运用分部积分法求解,类似的求解还有∫xsinxdx等


回答4:

回答5:

∫xcosxdx =∫xdsinx =xsinx-∫sinxdx =xsinx+cosx+C
利用牛顿-莱布尼兹公式就可以得到xcosx定积分。
连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
把函数f(x)的所有原函数F(x)+ C(其中,C为任意常数)叫做函数f(x)的不定积分,又叫做函数f(x)的反导数,记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C