∵b、c是正数,∴b+c≧2√(bc),∴bc/(b+c)^2≦1/4。又a(a+b+c)=bc,∴bc/(b+c)^2=[a/(b+c)][a/(b+c)+1],∴[a/(b+c)][a/(b+c)+1]≦1/4,∴[a/(b+c)]^2+[a/(b+c)]+1/4≦1/2,∴[a/(b+c)+1/2]^2≦1/2,∴a/(b+c)+1/2≦√2/2,∴a/(b+c)≦(√2-1)/2。∴[a/(b+c)]的最大值是(√2-1)/2。