(1)证明:∵(x3+y3)-(x2y+xy2)
=x2(x-y)+y2(y-x)
=(x-y)(x2-y2)
=(x-y)2(x+y)
又x、y都是正实数,
∴(x-y)2≥0、x+y>0,即(x3+y3)-(x2y+xy2)≥0
∴x3+y3≥x2y+xy2;
(2)∵a3-b3=a2-b2,
∴(a-b)(a2+ab+b2)=(a-b)(a+b),
又a≠b,故a-b≠0,
∴a2+ab+b2=a+b,
即(a+b)2-ab=a+b,又a>0,b>0,a≠b,
∴ab=(a+b)2-(a+b)<(
)2,a+b 2
∴3(a+b)2-4(a+b)<0,
∴0<a+b<
.4 3