(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2;(2)设不等的两个正数a、b满足a3-b3=a2-b2,求a+b的取

2025-05-06 10:40:55
推荐回答(1个)
回答1:

(1)证明:∵(x3+y3)-(x2y+xy2
=x2(x-y)+y2(y-x)
=(x-y)(x2-y2
=(x-y)2(x+y)
又x、y都是正实数,
∴(x-y)2≥0、x+y>0,即(x3+y3)-(x2y+xy2)≥0
∴x3+y3≥x2y+xy2
(2)∵a3-b3=a2-b2
∴(a-b)(a2+ab+b2)=(a-b)(a+b),
又a≠b,故a-b≠0,
∴a2+ab+b2=a+b,
即(a+b)2-ab=a+b,又a>0,b>0,a≠b,
∴ab=(a+b)2-(a+b)<(

a+b
2
)2
∴3(a+b)2-4(a+b)<0,
∴0<a+b<
4
3