lim x→∞,(1+x)^(1/x) =lim x→∞,e^[ln((1+x)^(1/x))] =lim x→∞,e^[(1/x)×ln(1+x)] 其中e的指数部分lim x→∞,(1/x)×ln(1+x)=lim x→∞,[ln(1+x)]/x ∞/∞型,使用洛必达法则,上下同时求导,得到 lim x→∞,[1/(1+x)]/1=0 所以e的指数部分极限是0,原式=l...
如图