由高斯公式,原式=∫∫∫(Px+Qy+Rz)dV ∫∫∫(2x+2y+2z)dv =0 这里,三重积分计算,用到对称性。注:当空间区域Ω关于坐标面(如:空间区域Ω关于yoz 坐标面)对称,被积函数关于另一个字母(如:被积函数关于z为奇函数)为奇函数,则三重积分为0。类似,还有两种情况。以这个题为例,第一个条件空间区域Ω关于yoz坐标面对称,第二个条件是被积函数x是关于x的奇函数,所以三重积分∫∫∫xzdv=0;空间区域Ω关于xoz坐标面对称,被积函数y是关于y的奇函数,所以三重积分∫∫∫ydv=0;空间区域Ω关于xoz坐标面对称,被积函数z是关于z的奇函数,所以三重积分∫∫∫zdv=0;所以,三重积分2∫∫∫(x+y+z)dv=0