已知tana=3,则sin^2a-3sinacosa

sin^2a-3sinacosa+4cos^2a的值是
2025-04-26 14:26:09
推荐回答(3个)
回答1:

原来的式子=(sinasina-3sinacosa+4cosacosa)/(sinasina+cosacosa)=
(tanatana-3tana+4)/(tanatana+1) ...上下除以cosacoa
所以=(9-9+4)/(9+1)=2/5

回答2:

2sin^2a-3sinacosa
=2*sina*tana*cosa-3sinacosa
=6sinacosa-3sinacosa
=3sinacosa
=3/2*sin(2a)
=3/2*((2*tan(a))/(1+tan^2(a)))
=3/2*2*3/(1+3^2)
=9/10

sin^2a-3sinacosa+4cos^2a
=(tana^2-3tana+4)/(1+tana^2)

回答3:

tana=3 sina=3cosa ,
sin^2a-3sinacosa
=sin^2a-sin^2a
=0