bc/a+ca/b+ab/c>=a+b+c
=(b^2c^2+c^2a^2+a^2b^2)/abc
=2(b^2c^2+a^2c^2+a^2b^2)/2abc
=[a^2(b^2+c^2)+b^2(a^2+c^2)+c^2(a^2+b^2)]/2abc
因为
a^2+b^2>=2ab,
b^2+c^2>=2bc,
a^2+c^2>=2ac
所以
原式=[2abc(a+b+c)]/2abc
=a+b+c当且仅当a=b=c时等号成立
>=a+b+c
所以:bc/a+ca/b+ab/c>=a+b+c