解答:解;(1)设当100<x<200时,y与x之间的函数关系式为:y=ax+b,
,
100a+b=6 200a+b=4
解得:
a=-0.02 b=8
∴y与x之间的函数关系式为:y=-0.02x+8;
故答案为:y=-0.02x+8;
(2)当采购量是x千克时,蔬菜种植基地获利W元,
当0<x≤100时,W=(6-2)x=4x,
当x=100时,W有最大值400元,
当100<x≤200时,
W=(y-2)x
=(-0.02x+6)x
=-0.02(x-150)2+450,
∵a=-0.02<0,
∴当x=150时,W有最大值为450元,
综上所述,一次性采购量为150千克时,蔬菜种植基地能获得最大利润为450元;
(3)∵418<450,
∴根据(2)可得,-0.02(x-150)2+450=418
解得:x1=110,x 2=190,
答:经销商一次性采购的蔬菜是110千克或190千克时,蔬菜种植基地能获得418元的利润.