陨石是从宇宙行星际空间落到地球的固体物质。晴朗的夜晚,繁星满天,仰望夜空,有时可以见到流星拖着闪亮的尾巴划过天空,消失在天边。这种坠落到地球上的流星,科学家称之为陨石。
陨石
陨石是由某种特殊原因形成的,或是星球爆炸、崩裂,或是飞出的宇宙尘埃,或是两两星球碰撞下来的碎块……当它们闯入地球大气层内时,由于高速飞行和大气的磨擦作用而燃烧消融,到达地球表面时,已变成了黑黝黝的、沉甸甸的石头,这就是陨石。
陨石,黑色,无光泽,表面不光滑,看起来并不漂亮。当南极考察队员采集南极石作纪念时,一般挑不上陨石;然而对于地球化学家和宇宙学家来说,那可是珍贵的科学样品了。
陨石之所以珍贵,在于它们取之不易。来自遥远太空的星球碎片,经过漫长旅途坠落地球表面时,极易石沉大海,难查踪迹。
陨石之所以珍贵,在于它们是“价廉物美”的科学样品。试想,要从其它星球取回样品,需动用宇宙飞船,其耗资之巨大,令人惊叹!阿波罗宇宙飞船登月,耗资亿万巨资,才仅仅从月球正面(或称月球的近边)采集了300多公斤月球表面的样品,仍然不能取得从地球表面不能看见的月球远边(或称月球背面)的样品。可是,要是能从地球表面拾到月球或其它星球的陨石,所需费用显然要少多了。事实表明,南极大陆地区,由于它是未开垦的处女地,陨石保存最为完好。例如,从南极大陆发现的陨石中,有9块陨石样品来自月球,称月球陨石;更为珍贵的是,其中有8块月球陨石来自月球背面。最为珍贵的还有两块在南极发现的陨石是来自火星的火星陨石,这对于研究火星的演变历史以及揭开火星上是否存在生命的科学之谜是很有意义的。目前,要到火星上采集样品比上月球采集更难、更耗资巨大。
陨石之所以珍贵,在于它们类似于一种从地球上发射到太空并可回收的宇宙空间探测器。原来,当陨石从行星际空间降落到地球以前,在它运行的途中,容易受到太阳风、宇宙和银河中宇宙射线的作用,陨石与它们相互碰撞后,在陨石上留下了有关宇宙空间辐射线和粒子辐射通量的信息。分析化验这些陨石,即可测定陨石的宇宙射线暴露年龄和陨石落地后的地球年龄,以及行星际空间宇宙射线和太阳风的强度。很显然,这与耗费巨资研制一种宇宙空间探测器相比,真是经济可行多了。
陨石之所以珍贵,在于它们是最古老的岩石。宇宙化学的主要任务之一是确定太阳系内固体物质的演化年代。有许多陨石的结晶年龄大致为45亿年~46亿年,接近于太阳系行星形成的年龄,而地球上最古老的岩石年龄大约只为38亿年,这对于确定太阳系内固体物质的演化年代无疑更为有效。
总之,陨石之所以珍贵,主要在于它们能"价廉物美"地提供地球以外各星球的早期历史资料和信息。它们不仅提供太阳系内的若干信息,还能提供太阳系以外的物质同位素组成的重要信息。地球化学家们在分析一种碳质球中,发现氧同位素异常;据此,科学家们推测,在这种陨石聚集过程中,有太阳系以外的物质加入,它可能是太阳系附近超新星的爆发而并入于太阳系内的。
由上看来,陨石确实很有科学价值。然而,地球如此广阔,为什么说南极大陆是天体演化的资料宝库呢?
原来,南极大陆的陨石有许多独特之处,为地球上其它地区所不及。
南极大陆陨石的地球年龄最长。所谓陨石的地球年龄,是指陨石碎落到地球表面后保存的年龄。在非南极地区,由于风化作用,陨石落地后保存的年龄仅为几千年;然而,由于南极大陆寒冷的气候条件和冰雪的覆盖,抑制了陨石样品被风化。南极铁陨石和石陨石的地球年龄一般可达95万年,比地球上非南极大陆陨石的地球年龄高一百多倍,其中,有两个南极陨石的地球年龄长达500万年。
南极陨石储存量最大。截至1989年为止,在南极大陆已采集到11000多块陨石样品,占全世界可用于研究的陨石样品的50%以上。应当指出,在南极大陆上,还有不少地区无人到达,随着南极科学考察的不断进展,将从南极大陆上采集到更多的陨石。
南极大陆陨石类型最丰富。一般说来,从南极大陆回收的陨石样品应与非南极地区的陨石相似。然而,在南极陨石中,除已知的陨石类型外,还发现许多异常的陨石。到1989年为止,已在南极陨石中发现8块能说明月球成因的月球陨石以及两块能说明火星发展历史的火星陨石。此外,还有其它独特的陨石类型,这是非南极地区所没有的。
南极大陆的陨石保持原状最好。这是因为,这些陨石长期在冷冻和无菌条件下保存,几乎没有受到地球上其它地区的污染。和其它非南极地区的陨石相比,它保持陨石的原始状态最好,最有利于研究太阳系内外星体的历史演变过程。
综上可见,陨石是研究太阳系内外星体历史演变过程的珍贵样品。它所提供的有关太阳系内外星体早期历史演变的信息,以及行星际宇宙射线和太阳风强度的资料,如果和宇宙飞船采集其它星体上样品提供的信息以及空间探测器测得的资料相比,无疑是既经济又可行多了。南极大陆的陨石藏量丰富,类型齐全,其地球年龄最长,原状保持最好,是地球上获得陨石样品的最佳场所。
南极大陆陨石如此珍贵,科学家们是如何搜集的呢?
南极大陆发现的第一块陨石是1921年12月25日由澳大利亚南极探险队于南纬67度11分,东经142度2分处采集到的。之后,直到1969年之前的48年中,总共只采集到4块陨石。
1969年,日本南极考察队在昭和站附近大和山区(约南纬69度,东经40度)的蓝色冰川表面发现9块陨石聚集在非常相近的地方。自此,人们开始相信,有可能在南极大陆找到更多的陨石。果然,仅在大和山区,1973年、1974年、1975年,日本考察队员又采集到520块陨石。
截至1989年底,科学家们已在南极大陆采集到11000多块陨石,主要采自南极大陆的大河山脉、阿伦丘陵、刘易斯冰舌崖和龙达尼山脉。
据统计,南极大陆的陨石主要富集在被山区阻挡的蓝色冰区。这可能是由于陨石降落到冰雪区后,随着冰川运动而搬运,当遇到隆起的山脉阻挡时,自然搁浅于山脉前后;冰川运动的挤压作用和山脉的阻挡作用,容易将藏在冰雪中的陨石挤压至表面层,再受南极大陆强烈的下降风的侵蚀作用,较易裸露且聚集于山麓前。这可能为我们提供一个找寻南极陨石的思路和方法。
石陨石上硅酸盐矿物如橄榄石、辉石和少量斜长石组成,也含有少量金属铁微粒,有时可达20以上。密度3至3.5。石陨石占陨石总量的95。1976年3月8日15时,吉林地区东西12公里,南北8公里,总面积500多平方公里的范围内,降一场世界罕见的陨石雨。所收集到的陨石有200多块,最大的1号陨石重1770公斤,名列世界单块陨石重量之最。吉林陨石表面,有黑色、黑棕色熔壳和大小不等气印。化学组成成分为Sio2占37.2,Mgo2占3.19 Fe占28.43。主要矿物有贵橄榄石、古铜辉石、铁纹石和陨硫铁;次要矿物有单斜辉石、斜长石等。石陨石根据起内部是否含有球粒结构又可分为两类:球粒陨石、不含球粒陨石。球粒陨石根据化学-岩石学分类被分为:E、H、L、LL、C 五个化学群类。E群中铁镍金属含量最高,形成在一个极端还原的环境中,其橄榄石和辉石中几乎不含氧化铁;C群中的铁镍金属含量最低(或不含铁镍金属成分),形成在一个相当氧化的环境中,其橄榄石和辉石中的氧化铁含量比值最高;H、L、LL群的形成环境界于E群和C群之间,其特点也界于E群和C群之间。无球粒陨石根据其氧化钙含量的高低分为:贫钙无球粒陨石、富钙无球粒陨石两个大类。贫钙无球粒陨石中的氧化钙含量小于等于3%;富钙无球粒陨石中氧化钙含量大于等于5%。 铁陨石
陨石是来自地球之外的“客人”。根据陨石本身所含的化学成分的不同,大致可分为三种类型:
1.铁陨石,也叫陨铁,它的主要成分是铁和镍;
2.石铁陨石,也叫陨铁石,这类陨石较少,其中 铁镍与硅酸盐大致各占一半;
3.石陨石,也叫陨石,主要成分是硅酸盐,这种陨石的数目最多。
陨石包含着大量丰富的太阳系天体形成演化的信息,对它们的实验分析将有助于探求太阳系演化的奥秘。陨石是由地球上已知的化学元素组成的,在一些陨石中找到了水和多种有机物。这成为“地球上的生命是陨石将生命的种子传播到地球的”这一生命起源假说的一个依据。通过对陨石中各种元素的同位素含量测定,可以推算出陨石的年龄,从而推算太阳系开始形成的时期。陨石可能是小行星、行星、大的卫星或彗星分裂后产生的碎块,它能携带来这些天体的原始信息。著名的陨石有中国吉林陨石,中国新疆大陨铁,美国巴林杰陨石,澳大利亚默其逊碳质陨石等。
石铁陨石由铁、镍和硅、酸、盐矿物组成,铁镍金属含量30至65,这类陨石约占陨石总量的1.2,故商业价值最高。该类陨石含铁70%以上,其次为硅、铝、镍,主要矿物有锥纹石、镍纹石、合纹石等,次要矿物为陨硫铁、铬铁矿、石墨等。石铁陨石根据起内部的主要成分和构造特点分为:橄榄石石铁陨石(PAL)、中铁陨石(MES)、古铜辉石——鳞石英石铁陨石。
陨石是来自地球之外的“客人”。根据陨石本身所含的化学成分的不同,大致可分为三种类型:
1.铁陨石,也叫陨铁,它的主要成分是铁和镍;
2.石铁陨石,也叫陨铁石,这类陨石较少,其中 铁镍与硅酸盐大致各占一半;
3.石陨石,也叫陨石,主要成分是硅酸盐,这种陨石的数目最多。