统计量是统计理论中用来对数据进行分析、检验的变量。
宏观量是大量微观量的统计平均值,具有统计平均的意义,对于单个微观粒子,宏观量是没有意义的.相对于微观量的统计平均性质的宏观量也叫统计量.需要指出的是,描写宏观世界的物理量例如速度、动能等实际上也可以说是宏观量,但宏观量并不都具有统计平均的性质,因而宏观量并不都是统计量.
数理统计的基本概念。指不含未知参数的样本函数。如样本x?1,x?2,…,x?n的算术平均数(样本均值)=1n(x?1+x?2+…+x?n)就是一个统计量。从样本构造统计量,实际上是对样本所含总体的信息提炼加工;根据不同的推断要求,可以构造不同的统计量。
统计量有众数,平均数,中位数等等
评价估计量好坏的标准
1) 无偏性。无偏性是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为θ,所选择的估计量为 θˆ,如果E( θˆ)= θ,称 θˆ 为 θ 的无偏估计量。
(2) 有效性。一个无偏的估计量并不意味着它就非常接近被估计的参数,它还必须与总体参数的离散程度比较小。假定有两个用于估计总体参数的无偏估计量,分别用m1和m2 表示,它们的抽样分布的方差分别用 D(m1 )和D(m2 )表示,如果 m1的方差小于m2 的方差,即D(m1)< D(m2 ),我们就称m1是比m2更有效的一个估计量。在无偏估计的条件下,估计量方差越小估计也就越有效。 (3)一致性,是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。