求极限limx→0[ax?(1x2?a2)ln(1+ax)](a≠0)

求极限limx→0[ax?(1x2?a2)ln(1+ax)](a≠0).
2025-02-28 03:53:57
推荐回答(1个)
回答1:

先将式子通分,得原式=
lim
x→0
ax?(1?a2x2)ln(1+ax)
x2

=
lim
x→0
a+2a2xln(1+ax)?
a?a3x2
1+ax
2x
0
0
型,运用洛必达法则);
=
lim
x→0
a2x+2a2xln(1+ax)
2x

=
lim
x→0
a2
2
+
lim
x→0
a2ln(1+ax)
;(极限的和运算)
=
a2
2