解答:解:连结BB′交OC于E点,如图,
∵四边形ABCO为平行四边形,
∴BC=OA=10,BC∥x轴,
而B(0,5),
∴C点坐标为(10,5),
设直线OC的解析式为y=kx,
把C(10,5)代入得10k=5,解得k=
,1 2
∴直线OC的解析式为y=
x,1 2
∵平行四边形OABC沿边OC所在直线翻折,得到平行四边形OA′B′C,
∴BE=B′E,CB′CB=10,
设B′点坐标为(a,b),则E点坐标为(
,a 2
),5+b 2
把E(
,a 2
)代入y=5+b 2
x得1 2
?1 2
=a 2
,5+b 2
∴a=2b+10,
∵CB′=10,
∴(a-10)2+(b-5)2=102,
∴(2b+10-10)2+(b-5)2=102,
整理得b2-2b-15=0,解得b1=5,b2=-3,
∵B′点在第四象限,
∴b=-3,
∴a=2×(-3)+10=4,
∴B′点的坐标为(4,-3),
∴k=4×(-3)=-12.
故答案为-12.