A、B特征多项式相同,设特征多项式的根为 λ1,λ2,……,λn (可能有重根).
由于A、B都可对角化,则都相似于D=diag{λ1,λ2,……,λn},
设 P1^{-1} A P1 =D,P2^{-1} B P2 =D,
则 P1^{-1} A P1 = P2^{-1} B P2,
故 A P1 = (P2*P1^{-1})^{-1} B (P2*P1^{-1}) = P^{-1} B P ,(P= P2*P1^{-1})
即A~B.
A、B特征多项式相同,设特征多项式的根为 λ1,λ2,……,λn (可能有重根).
由于A、B都可对角化,则都相似于D=diag{λ1,λ2,……,λn},
设 P1^{-1} A P1 =D,P2^{-1} B P2 =D,
则 P1^{-1} A P1 = P2^{-1} B P2,
故 A P1 = (P2*P1^{-1})^{-1} B (P2*P1^{-1}) = P^{-1} B P ,(P= P2*P1^{-1})
即A~B.
望采纳!~~~
利用相似有传递性,证明a~c,b~c,所以a~b。