图
θ∈(π/2,π),则sinθ>0cosθ=-5/13,又sin²θ+cos²θ=1,因此sinθ=√(1-cos²θ)=√[1-(-5/13)²]=12/13sin2θ=2sinθcosθ=2·(12/13)·(-5/13)=-120/169cos2θ=2cos²θ-1=2·(-5/13)²-1=-119/169tan2θ=sin2θ/cos2θ=(-120/169)/(-119/169)=120/119