求一道高数题p89.38

2025-04-25 22:11:59
推荐回答(2个)
回答1:

∫xtanx(secx)^2dx= ∫xtanxdtanx=1/2 ∫xd(tanx)^2=1/2[x(tanx)^2- ∫(tanx)^2dx]
=1/2[x(tanx)^2- ∫((secx)^2-1)dx]
= 1/2[x(tanx)^2- tanx +x] +C
所以原定积分=1/2[π/4*(tanπ/4)^2- tan(π/4) +π/4]=1/2(π/4-1+ π/4)= π/4-1/2

回答2:

方法如下图所示,

请认真查看,

祝学习愉快: