∫xtanx(secx)^2dx= ∫xtanxdtanx=1/2 ∫xd(tanx)^2=1/2[x(tanx)^2- ∫(tanx)^2dx]=1/2[x(tanx)^2- ∫((secx)^2-1)dx]= 1/2[x(tanx)^2- tanx +x] +C所以原定积分=1/2[π/4*(tanπ/4)^2- tan(π/4) +π/4]=1/2(π/4-1+ π/4)= π/4-1/2
方法如下图所示,
请认真查看,
祝学习愉快: