由题意知 An=n(n+1),则1/An=1/n(n+1)=1/n-1/(n+1) 又知Sn为1/An前n项和, 则Sn=1/A1+1/A2+1/A3+……+1/An =1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)(中间项相抵消) =1-1/(n+1)=n/(n+1) 所以Sn=n/(n+1)