已知x,y,z为三个非负实数,满足 x+y+z=30 2x+3y+4z=100 .(1)用含

2025-04-30 07:38:10
推荐回答(1个)
回答1:

(1)
x+y+z=30①
2x+3y+4z=100②

①×3-②得3x-2x+3z-4z=-10,
解得x=z-10,
①×2-②得2y-3y+2z-4z=-40,
解得y=-2z+40;
(2)∵x=z-10,y=-2z+40;
∴S=3(z-10)+2(-2z+40)+5z
=4z+50,
∵x,y,z为三个非负实数,
∴z-10≥0,-2z+40≥0,z≥0,
∴10≤z≤20,
当z=10时,S有最小值,最小值=40+50=90.
故答案为z-10,-2z+40;90.