如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0)。 注:q=1 时,an为常数列。
http://wenda.so.com/q/1361477610060326
1)等比数列:a(n+1)/an=q, n为自然数。
(2)通项公式:an=a1*q^(n-1);
推广式: an=am·q^(n-m);
(3)求和公式:Sn=n*a1(q=1)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即a-aq^n)
(前提:q不等于 1)
(4)性质:
①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(6)在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
我的答题到此结束,谢谢
希望我的答案对你有帮助
因为a3=a1*q*q,所以q=3orq=-3.当q=3时,an=a1*q~(n-1)=2*3~(n-1);同理,当q=-3时,an=2*(-3)~(n-1).其中n为大于零的自然数。