(Ⅰ)证明:∵ABC-A1B1C1是正三棱柱,
∴BB1⊥平面ABC,
∴BD是B1D在平面ABC上的射影
在正△ABC中,∵D是BC的中点,
∴AD⊥BD,
根据三垂线定理得,AD⊥B1D.
(Ⅱ)证明:连接A1B,设A1B∩AB1=E,连接DE.
∵AA1=AB∴四边形A1ABB1是正方形,
∴E是A1B的中点,
又D是BC的中点,
∴DE∥A1C.(7分)
∵DE?平面AB1D,A1C?平面AB1D,
∴A1C∥平面AB1D.(9分)
(Ⅲ)解:由图知VC?AB1D=VB1?ADC,AA1=AB=a,
∴VC?AB1D=VB1?ADC=
S△ADCBB1=1 3
a3.
3
24