矩阵的秩计算公式:A=(aij)m×n
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
扩展资料:
矩阵的秩
定理:矩阵的行秩,列秩,秩都相等。
定理:初等变换不改变矩阵的秩。
定理:矩阵的乘积的秩Rab<=min{Ra,Rb};
引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。
当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。
当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。
参考资料来源:百度百科-矩阵的秩
化成行最简形(或行阶梯形),然后数一下非零行数
例如:
矩阵的秩
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数。通常表示为r(A),rk(A)或rankA。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,
如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
拓展资料;
变化规律
(1) 转置后秩不变
(2)r(A)<=min(m,n),A是m*n型矩阵
(3)r(kA)=r(A),k不等于0
(4)r(A)=0 <=> A=0
(5)r(A+B)<=r(A)+r(B)
(6)r(AB)<=min(r(A),r(B))
(7)r(A)+r(B)-n<=r(AB)
矩阵的秩一般有2种方式定义
1. 用向量组的秩定义
矩阵的秩 = 行向量组的秩 = 列向量组的秩
2. 用非零子式定义
矩阵的秩等于矩阵的最高阶非零子式的阶
单纯计算矩阵的秩时, 可用初等行变换把矩阵化成梯形
梯矩阵中非零行数就是矩阵的秩
第2行,减去第3、4行,变成0
第2、4行交换,得到行阶梯型矩阵,数一下非零行数,是2
则秩等于2