解:(1)过A作AD⊥BC,交BC于D,则△ADB、△ADC均为RT△。∠B=45°,AB=4√2AD=AB·tan∠B=4√2×√2/2=4sin∠C=AD/AC=4/6=2/3(2)CD²+AD²=AC²CD=√(AC²-AD²)=√(6²-4²)=2√5(3)BD²+AD²=AB²BD=√(AB²-AD²)=√[(4√2)²-4²]=4BC=BD+CD=4+2√5S△ABC=½·BC·AD=½·(4+2√5)·4=8+4√5
c正弦是十分之四倍根号五