(1) f(x)=x-a^x
a=3时,f(x)=x-3^x
f'(x)=1-3^xln3
k=1-3ln3
f(1)=-2
y=f(x)在点P(1,f(x))处的切线方程:
y=(1-3ln3)(x-1)-2 即 y=(1-3ln3)x-3+3ln3
(2) f(x)=x-a^x
f'(x)=1-a^xlna
令f'(x)=0 a^xlna=1 a^x=1/lna
x=loga(1/lna)=-loga(lna)=-loga(1/loga(e))=loga(loga(e))
∵ f''(x)=-a^x(lna)^2<0
∴ g(a)=loga(loga(e))-a^loga(loga(e))=loga(loga(e))-loga(e)=ln(1/lna)/lna-1/lna=(-lnlna-1)/lna
g'(a)=(-1/a+lnlna/a+1/a)/(lna)^2=lnlna/[a(lna)^2]
a
∴当a=e时,g(a)取得最小值g(e)=(-lnlne-1)/lne=-1