(1)f(x)=ax2+1(a>0),则f′(x)=2ax,k1=2a,
g(x)=x3+bx,则g′(x)=3x2+b,k2=3+b,
由(1,c)为公共切点,可得:2a=3+b ①
又f(1)=a+1=c,g(1)=1+b=c,
∴a+1=1+b,即a=b,代入①式可得:a=3,b=3.c=4.
(2)由a2+b=0得b=-a2,设h(x)=f(x)+g(x)=ax2+1+x3-a2x.
则h′(x)=3x2+2ax-a2=(x+a)(3x-a),令h′(x)=0,解得:x=-a<0或x=
>0,a 3
x | (-∞,-a) | -a | (-a,0) |
h′(x) | + | - | |
h(x) | 单调递增 | 极大值 | 单调递减 |