(Ⅰ)方法一:
∵
=a sinA
=b sinB
,c sinC
∴
=a b
,sinA sinB
=c b
.sinC sinB
∵(2a-c)cosB=bcosC,
∴(2
?sinA sinB
)cosB=cosC.sinC sinB
∴2sinAcosB-sinCcosB=sinBcosC.
∴2sinAcosB=sin(B+C)=sinA.
∵A∈(0,π),∴sinA≠0.∴cosB=
.1 2
∵B∈(0,π),∴B=
.π 3
方法二:
∵(2a-c)cosB=bcosC,
∴(2a?c)
=b
a2+c2?b2
2ac
,
a2+b2?c2
2ab
化简得 a2+c2-b2=ca,
∴cosB=
=
a2+c2?b2
2ac
,1 2
∵B∈(0,π),∴B=
,π 3
(Ⅱ)在△ACD,△ABD中,
=CD sin∠CAD
,AD sinC
=BD sin∠BAD
.AD sinB
由(Ⅰ)知:B=
.π 3
∵点D为BC边的中点,∠CAD=
,∴∠ABC=π-?π 6
?π 3
?C=π 6
?C,π 2
∴
=1 sin
π 6
,AD sinC
=1 sin(
?C)π 2
,AD sin
π 3
化简得sin2C=
,
3
2
∵C∈(0,
),∴2C∈(0,π),π 2
∴2C=
或π 3
,即C=2π 3
或C=π 3
,π 6
当C=
时,△ABC为等边三角形,由CD=1可得:AB=2CD=2;π 3
当C=
时,∠BAD=π 6
?π 2
=π 6
,所以△ABD为等边三角形,由CD=1可得:AB=BD=CD=1.π 3
综上得,c=2或c=1.