(1)由题意可知:AB∥OP,
∴△ABC∽△OPC.
∴
=AC OC
,AB OP
∵OP=l,AB=h,OA=a,
∴
=AC a+AC
,h l
∴解得:AC=
.ah l?h
(2)∵AB∥OP,
∴△ABC∽△OPC,
∴
=AB OP
=AC OC
,h l
即
=AC OC?AC
,即h l?h
=AC OA
.h l?h
∴AC=
?OA.h l?h
同理可得:DA=
?O′A,h l?h
∴DA+AC=
(OA+O′A)=h l?h
是定值.hm l?h (3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).
由(1)可知
=AC OC
,即AB OP
=h l
,∴AC OC
=OA OC
=OC?AC OC
,l?h l
同理可得:
=OA′ OC′
,l?h l
∴
=OA OC
,OA′ OC′
由等比性质得:
=AA′ CC′
=OA′?OA OC′?OC
,l?h l
当李华从A走到A'的时候,他的影子也从C移到C',因此速度与路程成正比
∴
=AA′ CC′
=v1 v2
,l?h l
所以人影顶端在地面上移动的速度为v2=
.lv1
l?h