(1)解:函数f(x)在[0,+∞)上单调递增
求导函数可得f′(x)=ex?
1 x+1
令g(x)=ex?
,则g′(x)=ex+1 x+1
≥01 (x+1)2
∴g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0
∴f′(x)≥0
∴函数f(x)在[0,+∞)上单调递增
∴最小值为f(0)=1
(2)证明:由(1)知,f(x)≥f(0)=1
∴ex-ln(x+1)≥1
∴ex≥ln(x+1)+1
取x=
,则e1 n
≥ln(1 n
+1)+1=ln(n+1)-lnn+11 n
∴e≥ln2-ln1+1,e
≥ln3?ln2+1,…,e1 2
≥ln(n+1)-lnn+11 n
相加可得e+e
+e1 2
+…+e1 3
≥ln(n+1)+n(n∈N*).1 n