(1)证明:由bn=3-nan得an=3nbn,则an+1=3n+1bn+1.
代入an+1-3an=3n中,得3n+1bn+1-3n+1bn=3n,
即得bn+1?bn=
.1 3
所以数列{bn}是等差数列.(6分)
(2)解:因为数列{bn}是首项为b1=3-1a1=1,公差为
等差数列,1 3
则bn=1+
(n?1)=1 3
,则an=3nbn=(n+2)×3n-1.(8分)n+2 3
从而有
=3n?1,an n+2
故Sn=
+a1 3
+a2 4
++a3 5
=1+3+32++3n?1=an n+2
=1?3n
1?3
.(11分)
3n?1 2
则
=Sn S2n
=
3n?1
32n?1
,1
3n+1
由
<1 128
<Sn S2n
,得1 4
<1 128
<1
3n+1
.1 4
即3<3n<127,得1<n≤4.
故满足不等式
<1 128
<Sn S2n
的所有正整数n的值为2,3,4.(14分)1 4