由图象可知,物体A、B不连接,A、B与弹簧分离后,
A的速度vA=-4m/s,方向向左,C与A发生完全弹性碰碰撞,
由动量守恒定律得:mAvA+mCv0=mAvA′+mCv,
即:0.1×(-4)+0.1×v0=0.1×vA′+0.1×v…①
由能量守恒定律得: 12mAvA2+ mCv02= mAvA′2+ mCv2,
即: 12×0.1×(-4)2+ ×0.1×v02= ×0.1×vA′2+ ×0.1×v2 …②
C与A要发生第二次碰撞,需要满足:v>vA′…③
由①②③解得:v0>20m/s. 望采纳
解:(1)由图乙所示图象可知,在T4、T2+T4、T+T4…时刻,
即t=14T+k2T,(k=0、1、2、3…)时,弹簧恢复原长.
(2)由图乙所示图象可知,弹簧恢复原长时,
vA=-4m/s,A、B组成的系统动量守恒,
从烧断细线到弹簧恢复原长的过程中,
由动量守恒定律得:mAvA+mBvB=0,
即:0.1×(-4)+0.2×vB=0,解得:vB=2m/s,
当弹簧长度最大时,系统机械能完全转化为弹簧的弹性势能,
由能量守恒定律得:弹簧的最大弹性势能:
E=12mAvA2+12mBvB2=12×0.1×(-4)2+12×0.2×22=1.2J;
(3)由图象可知,物体A、B不连接,A、B与弹簧分离后,
A的速度vA=-4m/s,方向向左,C与A发生完全弹性碰碰撞,
由动量守恒定律得:mAvA+mCv0=mAvA′+mCv,
即:0.1×(-4)+0.1×v0=0.1×vA′+0.1×v…①
由能量守恒定律得:12mAvA2+12mCv02=12mAvA′2+12mCv2,
即:12×0.1×(-4)2+12×0.1×v02=12×0.1×vA′2+12×0.1×v2 …②
C与A要发生第二次碰撞,需要满足:v>vA′…③
由①②③解得:v0>20m/s.