(2004?泰安)已知:如图,⊙P与⊙O相交于点A、B,且⊙P经过点O,点C是⊙P的优弧AB上任意一点(不与点A、

2025-05-06 17:24:17
推荐回答(1个)
回答1:

(1)证明:在⊙O中,∵AO=BO,

AO
=
BO

∴∠ACO=∠DCB,
又∵∠1=∠2,
∴△ACO∽△DCB,
AC
DC
=
CO
CB

∴CD?CO=CA?CB;

(2)解:连接OP,并延长与⊙P交于点E.
若点C在点E位置时,直线CA与⊙O相切,
理由:连接AE,
∵EO是⊙P的直径,
∴∠EAO=90°,
∴OA⊥EA,
∴EA与⊙O相切,
即点C在点E位置时,直线CA与⊙O相切.

(3)当∠ACB=60°时,两圆半径相等.理由:
解:作直径OE,连接BE,AE,OA,
∵∠AEB=∠ACB=60°,PO垂直平分AB,
AO
=
BO

∴∠AEO=∠BEO,
∴∠AEO=30°,
∵OE是直径,
∴∠EAO=90°,
∴OA=
1
2
OE,
∴OA=PO,
∴当∠ACB=60°时,两圆半径相等.