如图,在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点,如果点M、N分别在线段AB、AC上移动,在移动中保持A

2025-05-06 06:10:59
推荐回答(5个)
回答1:

解答:证明:△OMN为等腰直角三角形.理由如下:
连接OA,如图,
∵AC=AB,∠BAC=90°,
∴OA=OB,OA平分∠BAC,∠B=45°,
∴∠NAO=45°,
∴∠NAO=∠B,
在△NAO和△MBO 中,

AN=BM
∠NAO=∠B
AO=BO

∴△NAO≌△MBO,
∴ON=OM,∠AON=∠BOM,
∵AC=AB,O是BC的中点,
∴AO⊥BC,
即∠BOM+∠AOM=90°,
∴∠AON+∠AOM=90°,
即∠NOM=90°,
∴△OMN是等腰直角三角形.

回答2:

回答3:

什么意思?问什么?

回答4:

问题是什么

回答5:

题目不全
缺少