【选修4--5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ca≤13(Ⅱ)a2b+b2c+c2a≥1

2025-04-23 04:22:31
推荐回答(1个)
回答1:

解答:证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:
a2+b2+c2≥ab+bc+ca,
由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,
所以3(ab+bc+ca)≤1,即ab+bc+ca≤

1
3

(Ⅱ)因为
a2
b
+b≥2a,
b2
c
+c≥2b,
c2
a
+a≥2c,
a2
b
+
b2
c
+
c2
a
+(a+b+c)≥2(a+b+c),即
a2
b
+
b2
c
+
c2
a
≥a+b+c.
所以
a2
b
+
b2
c
+
c2
a
≥1.