DWDM首先把引入的光信号分配给特定频带内的指定频率(波长,lambda),然后把信号复用到一根光纤中去,采用这种方式就可以大大增加已铺设光缆的带宽。由于引入(incoming)信号并不在光层终止,接口的速率和格式就可以保持独立,这样就允许服务供应商把DWDM技术和网络中现有的设备集成起来,同时又获得了现有铺设光缆中没有得以利用的大量带宽。
DWDM可以把多个光信号搭配起来传输,结果这些光信号可以编成同一组同时被放大并且通过单一的光纤传输,网络的带宽也就大大增加(参看图 3)了。每个承载的信号都可以设置为不同的传输速率(OC–3/12/24等)和不同的格式(SONET、ATM、数据等)。比方说,某个DWDM网络可以在DWDM基础上混合OC–48 (2.5 Gbps)和OC–192 (10 Gbps)两种速率的SONET信号。从而获得高达40 Gbps的巨大带宽。采用DWDM的系统在达到以上目标的同时仍然可以维持和现有传输系统同等程度的系统性能、可靠性和稳固性——甚至过之而无不及。以后的DWDM终端更可以承载总计80个波长之多的OC–48以达到200 Gbps的传输速率或者高达40波长的 OC–192以达到400 Gbps的传输速率,这个带宽已经足以在一秒钟之内传输9万卷的大百科全书。实现这种高速、高容量传输能力的关键技术就是光放大器。光放大器运行在特定光谱频带之上并根据现有的光纤进行了优化,这样就可以使得光放大器有可能放大光波信号,从而在无须将其转换为电信号的情况下扩大其传输范围。超宽频带光纤放大器在实践中运用证明承载100个通道(或者波长)的光波信号可以有效地被放大。使用这种放大器的网络可以非常轻松地处理太比特级的信息。以这个速率传输,这种网络甚至可能一次传输全世界所有的电视频道节目或者同时传送50万部电影。
以公路做比喻,一根光纤也可以看作一条多车道公路。通常意义上的TDM系统使用该公路的一个车道,通过在这唯一车道上加快汽车的驾驶速率来增加带宽。在光缆网络中,DWDM的采用好比为把后面的汽车放到了公路上没有使用的车道上(增加了铺设光纤的波长数目)得以获得难以置信的巨大带宽。另外还有一个好处:这条公路并不关心跑在自己上面的车流都是些什么类型。结果呢,跑在DWDM这条公路上的“车子“们可以装载ATM信元、SONET和IP包。