数列求和:1平方+3平方+5平方+……+(2n-1)平方

2025-02-25 01:00:23
推荐回答(1个)
回答1:

已知:1^2+2^2+3^2+……+n^2
=n(n+1)(2n+1)/6
—①
那么1^2+2^2+3^2+……+n^2+……+(2n+1)^2
=(2n+1)(n+1)(4n+3)/3
—②
又有2^2+4^2+6^2+……+(2n)^2
=4[1^2+2^2+3^2+……+n^2]=4*①=2n(n+1)(2n+1)/3
—③
设所求为S
比较②和③可知
S
=
②-③

=
(2n+1)(n+1)(4n+3)/3-2n(n+1)(2n+1)/3

=
(2n+1)(n+1)(2n+3)/3
—④
因为S是n+1项的和
把它一般化
则奇数项平方和一般公式Sn=n(2n-1)(2n+1)/3